Anomalous Heating and Plasmoid Formation in a Driven Magnetic Reconnection Experiment.

نویسندگان

  • J D Hare
  • L Suttle
  • S V Lebedev
  • N F Loureiro
  • A Ciardi
  • G C Burdiak
  • J P Chittenden
  • T Clayson
  • C Garcia
  • N Niasse
  • T Robinson
  • R A Smith
  • N Stuart
  • F Suzuki-Vidal
  • G F Swadling
  • J Ma
  • J Wu
  • Q Yang
چکیده

We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3  T), advected by supersonic, sub-Alfvénic carbon plasma flows (V_{in}=50  km/s), are brought together and mutually annihilate inside a thin current layer (δ=0.6  mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging, and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows, and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures (T_{e}=100  eV, T_{i}=600  eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, consistent with the predictions from semicollisional plasmoid theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmoid-Induced-Reconnection and Fractal Reconnection

As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-inducedreconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the cla...

متن کامل

Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments

The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing as...

متن کامل

Solar flare radio pulsations as a signature of dynamic magnetic reconnection

Decimetric radio observations of the impulsive solar flare on October 5, 1992, 09:25 UT show a long series of quasi-periodic pulsations deeply modulating a continuum in the 0.6–2 GHz range that is slowly drifting toward lower frequencies. We propose a model in which the pulsations of the radio flux are caused by quasi-periodic particle acceleration episodes that result from a dynamic phase of m...

متن کامل

Formation of plasmoid chains in magnetic reconnection.

A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (10(4) <or= S <or= 10(8)) is reported. Large-aspect-ratio Sweet-Parker current sheets are shown to be unstable to super-Alfvénically fast formation of plasmoid (magnetic-island) chains. The plasmoid number scales as S(3/8) and the instability growth rate in the linear ...

متن کامل

3D Dissipation Mechanism in Fast Magnetic Reconnection

Magnetic reconnection is a promising process which provides efficient energy release in solar flares and geomagnetospheric substorms. The process is also considered be important in fusion devices because it can disturb the plasma confinement due to the magnetic field. The efficient energy release of the magnetic field requires a locally intense electric resistivity. However, the generation mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 118 8  شماره 

صفحات  -

تاریخ انتشار 2017